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The perturbative effects of plasma electrons and ions on the effective capture and ionization rates in
hydrogen plasma are analyzed. A simple model of hydrogen plasma is constructed to extract the salient
features of the system, which is assumed to be in local thermal equilibrium. The interplay between the
collisional and radiative processes as functions of the electron temperature and density is explicitly
demonstrated. A large increase in the collisional radiative recombination rates at high density and low
temperature is caused by (i) the shift in the dominant capture mechanism from the radiative to collision-
al cascade, and (ii) the presence of upper states in Saha equilibrium which act as a reservoir of popula-
tion flux. Different sets of effective rates which reflect the approximate structure of the rate equations
are evaluated, stressing the relationship between the rate coefficients and the rate equations. When the
angular-momentum sublevels are averaged over, because of rapid /-changing collisions, the ion field dis-
tortion effect is shown to be negligible, in the lowest order approximation.

PACS number(s): 52.20.—j, 52.70.—m

I. INTRODUCTION

Much work has been done in recent years in generating
various reaction rates for different ionic species which are
present inside plasmas, for modeling and diagnostics of
low-temperature industrial plasmas as well as high-
temperature fusion and astrophysical plasmas. In almost
all cases, the rates for electron-ion collisional excitation,
ionization, and capture have been calculated in the zero-
density limit and for the ground states. Local thermal
equilibrium (LTE) is also assumed for the electron-ion
distributions in calculating the rates. As stressed recently
[1], some of these assumptions are not applicable in many
practical cases, and we list below several critical factors
that require careful analyses:

(a) The plasma effects on atomic reaction rates can be
very large [2—15]. The plasma effects involve both field
distortion (FD) of the atomic (or ionic) states [4-7], pri-
marily caused by the plasma ion perturbers, and col-

lisional transitions (CT) among the atomic levels, caused.

mainly by the plasma electrons [9-11]. The FD and CT
effects are often inseparable and must be treated simul-
taneously. The rate equations deal with the CT effect,
while the input rates and the very definition of the states
that the CT connect are affected by the FD effect.

(b) When the rate equations contain more than one
atomic state, the required input data are obviously those
rates for the ground states as well as for the excited states
included explicitly in the truncated set of rate equations.
Thus, the definition of rates must reflect the structure of
the rate equations being used. This is a rather trivial
point but one that has often been ignored in generating
the rate data.

(c) In addition to the principal elements of a plasma,
e.g., electron and protons in hydrogen plasma, there are
almost always other impurity ions which can seriously
disrupt the various atomic processes, including ion-atom
collisions with or without charge exchange.

(d) Actual plasmas are not always in LTE, even within
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a limited small volume inside the plasma, due to the
transport of particles and turbulence [12]. Plasma con-
tainer walls and external particle injections, etc., produce
non-Maxwellian distributions and can seriously affect the
rates themselves, which are defined in terms of the distri-
bution function f.

It is therefore desirable to formulate the modeling
problem in a systematic way [13—16], consistently taking
into account all the critical factors and assumptions. As
a first step in this effort, we consider the CT and FD
effects for the simple system of hydrogen plasma [2], con-
centrating on points (a) and (b) discussed above. Points
(c) and (d) are important, but will not be considered in
this paper. They will be treated in later reports [17].

Hydrogen plasma is obviously the simplest system and
was studied in the pioneering work of Bates et al. [2],
where the collisional radiative recombination and ioniza-
tion rates were shown to change many orders of magni-
tudes from the direct radiative recombination and direct
ionization rates, especially at high densities and at low
temperatures. These results involve several critical as-
sumptions introduced in the theory, and it is the purpose
of this paper to analyze the system further, in terms of a
simple model. As will be shown in Sec. IV, the model
contains three levels, with all the essential features of the
original system, and can even predict the rates quantita-
tively at high densities. The model is used to examine
both points (a) and (b) raised above.

In Sec. II we summarize the original theory of Bates
et al., and list carefully the critical assumptions which
were introduced. A simple three-level model will be con-
structed in Sec. III. A numerical study of the model will
be presented in Sec. IV, where different approximations
on the excited-state populations are shown to change the
final solutions, thus further clarifying the role played by
the excited states which are in Saha equilibrium. The
effect of ionic field perturbation and the / mixing is briefly
considered in Sec. V. The angular-momentum depen-
dence has been averaged over in the original system, and
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we will show that the main FD effect may be minimal in
the l-averaged theory.

Extensions of the present study to include the angular-
momentum dependence and corresponding field distor-
tion effect, and the contribution of the closely packed
Rydberg states, will be considered in future works. The
FD effect on high Rydberg states (HSR) may be con-
veniently treated by a quasicontinuum model in terms of
Fokker-Planck equations [9,10,17].

As noted in (c) above, high-temperature plasmas often
contain a sizable amount of heavy impurities. These im-
purities with varying degrees of ionization introduce
complex atomic processes involving more than one elec-
tron, such as the dielectronic recombination, resonant ex-
citation and autoionization, etc. The resonant processes
involving high Rydberg states are especially sensitive to
plasma effects. The hydrogen-plasma model we study
here focuses more on the basic structure of the problem
without the complications of heavier ions and resonances.
But eventually more complex ionic structure allows in-
vestigation of points (c) and (d) above [11-15].

II. THE HYDROGEN PLASMA

We first summarize briefly the hydrogen plasma stud-
ied by Bates et al. [2], using their notation. The physical
assumptions and approximations introduced in the con-
struction and solution of the rate equations will be explic-
itly enumerated. This will lead naturally to our model
presented in Sec. III.

The rate equations for the number densities n
drogen atoms in states p are given by

h,=—n, [nc [Kpc-f- > qu]+ > qu]
q (#p) g (<p)

+nc 2 n‘IKqP+ 2 nqup+ncn1[ch+Bp]’
q (#p) g (>p)

, of hy-

(1)
where K, are collisional (three-body) recombination
rates, from c¢—p, which are density dependent. The
density-independent rates are K, (K,=K,,/n.). The
collisional ionization rates, from p —c, are K e The col-
lisional excitation or deexcitation rates, from p—gq, are

K,,- The radiative decay rates, from p-—gq, with p>g,
are qu. The radiative recombination rates, ¢ —p, are
By

Several critical assumptions were introduced in the
construction of (1) which are summarized below:

(i) The continuum electron density n, and the ion den-
sity n; are held constant throughout the duration of re-
laxation, independent of the initial conditions, even when
the atomic population is much larger than that of free
electrons and ions. This implies that we have infinitely
large electron and ion baths of the surrounding plasma
that maintain the overall electron and ion densities in the
specified local volume, within which we assume the plas-
ma in local thermal equilibrium insofar as the continuum
particles are concerned, with constant densities. (For
neutral plasmas, we also have n, =n;.) Extensions of this
approximation where n, and n; vary in time are not
readily solvable because of the nonlinearity of the rate
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equations for these quantities.

(ii) The I sublevels are averaged over to simplify the
treatment. This is partially justified when the /-mixing
collisions by the plasma particles are very fast, effectively
populating all the / sublevels statistically. This is reason-
able and greatly simplifies the analysis. All the rates
which appear in (1) have been properly adjusted. Some
discussion on this problem is given in Sec. V in connec-
tion with the field distortion effect. The problem of expli-
cit / dependence and field mixing will be considered in de-
tail elsewhere [18].

(iii) The plasma is assumed to be optically thin, so that
all the radiation emitted escape the local volume, drain-
ing energy from the plasma. Furthermore, all the heavy-
particle collisions are neglected; this is consistent with as-
sumption (ii) above. There are, of course, many cases in
which such simplifications cannot be made, especially
when impurity ions are present, with strong charge-
exchange channels, and for a plasma microsphere deep
inside a dense plasma (optically dense), as in the interior
of the sun.

(iv) For high Rydberg states with p > s, for some s to be
specified later, the nearest-neighbor collisional transitions
dominate, and the number density n, may be assumed to
have reached the Saha equilibrium at all times. The
structure of (1) and the Maxwell distribution assumed for
the electrons in LTE are consistent with the assumption
that when p is large enough, all the radiative processes
are negligible and collisional processes dominate.

The population density may be normalized in terms of
the Saha equilibrium values where
3/2

exp(l,/kgT,) , (2)

2

2
n,=n.n;p
mkpT,

P

where I, is the ionization energy of the state p.
It is convenient to normalize n, in terms of the Saha
values as

P,()=n,/n}, 3)

P

such that we have by the definition of s,
P,=1 forp>s . (4)

The detailed balance relations at equilibrium, as a re-
sult of time-reversal invariance of the collision cross sec-
tions, are given by

Epr _ E
anqp n; K

JK,, and n;K,=nfK (5)

ppc?

which are also consistent with the Saha equilibrium
values (2).

The rate equations in terms of the normalized popula-
tion densities P replace (1). Using (5) and the explicit
equilibrium densities inserted to adjust the rates, we can
rewrite (1) as

Pp:”_Pp [”c [Kpc+ 2 Ky |t X Ay
q (#p) q (<p)

E E
+ 3 PpnK,+ 3 PnfF/mFra,
q (#p) g (>p)

+n. K, +(n.n;/n;)B, (6)
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for p and g <s. The actual values of s, where P,— 1 for
all p > s, depend on the electron density and temperature,
and are determined iteratively by observing the solutions
of (6) as a function of p. This is discussed further in Sec.
IV. The property that P,~1, p > s allows one to truncate
the infinite set of coupled rate equations (6) to a finite set
of s equations.

When the system described by (6) reaches the equilibri-
um (.e., Pp =0), the solution does not depend on the ini-
tial conditions, because (6) is linear and inhomogeneous
in P. The equilibrium properties for the states p <s are
obtained by first setting in (6) Pp,=0 for all p’ > 1, and ex-
cluding the ground state p=1. Following Ref. [2], we
write

P,=ro,t+ry, Py, p'>1. (7)
Substitution of (7) into the P, equation eliminates all the
P, and we obtain

P,=(n.n;/nE)a;—n.S,P, . (8)

The physical interpretation of this result is that if one
were to describe the hydrogen plasma in terms of the sin-
gle ground-state equation (8), the effective rate
coefficients to be inserted are the collisional radiative
recombination a; and collisional radiative ionization rate
S,. Substitution of the solution of Eq. (8) for P, into (7)
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gives all the other P, as functions of 7. For later discus-
sion it is convenient to define separately the radiative and
collisional contributions as

Sl =Slc_Slr > (8’)

where the minus sign in front of S, is introduced to
make the S, positive. In addition, we also set

al=alc+alr . (8”)

Next, the solution for P; at equilibrium is obtained by
setting P, =0 in (8), and we obtain

PE=n,a,/(nks,), 9)

which is in general different from unity. But, at high den-
sities the collisional effect dominates, leading to Pf—»l.
When (9) is put back to (7), we obtain the equilibrium
population of the excited states:

Plg —_—rop,+rlp,n,a1/(nfsl) N pl>1 . (10)

All the input rates which appear in Egs. (1) and (6) are
given in the various references [6—9]. We summarize in
Table I only those values which are needed in the study
of the model to be presented in Sec. III. All the other
quantities which appear in Egs. (7)-(10) are expressed in
terms of these input rates. Their explicit formulas are
complex, but in Sec. III, a simple model will be construct-
ed, and all the derived states are readily given explicitly.

TABLE I. The collisional and radiative rates used in the model are summarized at three temperatures: (a) K, are the collisional
rates for p —gq transitions, given in units of cm®/sec. The inverse rates f('q,, in units of cm®/sec, are given in the row immediately
below the direct rates. The large difference in magnitudes between the direct and inverse rates at low T is due to the Saha equilibri-
um values and extra density factor, as shown in (2) and (5). (b) B, are the radiative recombination rates to state p from the continu-
um. (c) A4,, are the spontaneous radiative decay probabilities for the transitions p—g. The electron density n. is given in units of
cm ™3, and the rates are in cm®/sec. Numbers in square brackets denote powers of 10.

(a) Collisional rates

T (10° K) K /K5 K3 /K3 Ky /K3 K34 /Ky K./K; K,. /K., K. /K
4 4.82[—21] 4.20[—24] 2.69[—09] 5.68[—07] 1.34[—26] 2.73[—12] 4.19[—09]
4 8.66[—09] 8.07[—10] 2.87[—07] 2.18[—06] 3.09[—30] 3.50[—28] 5.02[—27]
16 2.17[—11] 1.14[—12] 1.82[—07] 2.73[—06] 3.38[—13] 1.23[—08] 2.38[—07]
16 8.89[—09] 8.17[—10] 3.19[—07] 2.48[—06] 1.36[—30] 1.20[—28] 1.33[—27]
64 5.83[—09] 8.31[—10] 5.17[—07] 3.58[—06] 1.54[—09] 1.33[—07] 6.74[—07]
64 9.29[ —09] 8.27[—10] 3.24[—07] 2.27[—06] 4.70[—31] 2.55[—29] 2.07[—28]
(b) Radiative recombination rates
T (10°K) B B, Bs By Bs Bs B,
4 2.50[—13] 1.32[—13] 8.44[— 14] 5.86[—14] 4.29[—14] 3.26[—14] 2.54[—14]
16 1.20[ —13] 5.63[—14] 3.19[ —14] 2.00[— 14] 1.35[—14] 9.56[—15] 7.06[—15]
64 5.19[—14] 1.95[—14] 9.48[—15] 5.37[—15] 3.36[—15] 2.25[—15] 1.59[—15]
(c) Spontaneous radiative decay probabilities A,,
p q 1 2 3 4 5 6 7
2 4.70[8]
3 5.58[7] 4.41[7)
4 1.28[7] 8.42[6] 8.99[6]
5 4.13[6) 2.53[6] 2.20[6] 2.70[6]
6 1.64[6) 9.74[5] 7.79[5] 7.72[5] 1.03[6]
7 7.57[5] 4.39(5] 3.36[5] 3.04[5] 3.25[5] 4.56[5]
8 3.87[5] 2.22[5] 1.65[5] 1.42[5] 1.39[5] 1.56[5] 2.27[5]
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III. A THREE-LEVEL MODEL

In order to bring out the essential features of the hy-
drogen plasma described by (1) and (6), we consider a
simple three-level atom of the hydrogen plasma in LTE,
i.e., the states 1+2+3+c (continuum). All the quanti-
ties can then be explicitly written down and various
effects identified.

A. The model

The rate equations for the population of these states
are given by
Py=—P[n.K\ +n.K+nK;l+PnKy+nK Py
+Py(n3 /nT) Ay +(nf/nf) APy

+n. K, . +(n2/nf)B,, (11a)

Py=—P,)[n.K; +n.Ky +nKy+ A,]
+n,Ky P, +n.P;K,+(nf/nk)a,,pP,
+n.K, +(n2/nf)g,,
Py=—P;[n Ky, +n Ky +nKy+dy+Ady]
+n, Ky Py +n,PKy+n.Ky +(n2/nf)B; .

(11b)

(11¢)

As will be shown, the effectiveness of the model comes
from the fact that when level p with p > s is depleted by
collisions and radiative decays, they are instantly repopu-
lated to Saha equilibrium. This feature of the model thus
provides an unlimited source of electrons in the excited
states, so that whether we have many upper levels or just
one level 3, the final effect on states 1 and 2 is similar.
Somewhat simpler models involving one and two bound
levels are also considered in Appendixes A and B, respec-
tively.

There are many ways by which initial conditions may
be chosen, and these give different solutions. The con-
struction of the desired model is complete with the final

assumption that
Py;=1. (12)

Choice (12) is somewhat arbitrary and the effective P,
|

a(IS):{Kcl+n3EK3l/nc+[Kc2+n3EK32/nc ]Dz_lncKZI}
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may lie between 0 and 2 when (6) is fully solved. Its value
depends on the electron temperature and density. There-
fore, this number may be adjusted as a parameter at this
stage. Since level 3 presumably represents all the states
which lie above it, (12) should be regarded as an effective
value. With (12), Egs. (9) are essentially reduced to that
for P, and P, only, as

P =—P|n K +nKj,+nK;3]+PnK,+nK
+P2(”f/’1f)A21 'an/"f)Au

+ncK1c+(ncz/n{£)B1 > (13&)
Py= —Py[n Ky +n Ky +n.Ky+ A4,]

+ncK21P1+nCK23 +(n§/n2E)A32

+n Ky +(n2/n5)B, . (13b)

Equations (13) define our model, whose properties we will
study numerically in the Sec. IV. As will be shown, as-
sumption (12) has a profound effect on the final equilibri-
um population of states 1 and 2. We note in particular
that the terms n K,; in (13a) and n.K,; in (13b) retain
the trace of state 3, and become dominant at high densi-

ty.
B. P,=0, P;=1

Equation (13) may be reduced for P, alone at equilibri-
um by setting the left-hand side of (13b) equal to O, and
we obtain equations similar to (8). Thus, from (13b) we
have

P2=D2_1”CK21P1+D;1[ncK23+(”f/”2E)A32

+{B+[BytnF Ay /n2 1Dy Ay + Ky +nfKy /n 1Dy Ay +([Bytnf A3y /n21D5 0 Ky, )

= (3 3
=al+al?

5(13)2{ch +K13‘*‘Ku_K12D2_l"cK21 } -K12D;1A21

= qQ(3)__ ¢(3)
_Slc Slr N

In (16), as in (8') and (8"), we separated the collisional
and radiative contributions by putting all the terms that
contain the radiative part in “r,”” and the collisional part

in “c,” except for the D factor. The numerical values for

+n.K, +(n2/nf)B,], (14)
where
Dy =n,[Ky + Ky +Ky ]+ 4y .
Substitution of (14) into (13a) then gives
P,=(n.n,/n¥)a¥—nsPpP,, (15)
where we have explicitly
(16a)
(16b)

[

the effective capture and ionization rates &> and S{*’, re-
spectively, are tabulated in Table III (a). This is one of
the main results of this paper and can be compared with
the result of Bates et al. [2].
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C. P,#0,P;=1

For transient solutions, we have directly from (11) a
coupled set of equations,

Py=—nSP'P +(nn /nf)a’ +X 5P,y
Py=—n.S¥ Py, +(n.n;/n¥)as> +Xx,,P, ,

(17a)
(17b)

where the various factors are immediately identified from
(16). In particular, we have

X =nKp+ni/nf)dy ,
Xy =nkK .

As will be shown in Sec. IV, ¥ and a{*) are different
from S'¥ and a{¥ of (15), stressing the point that the
effective rates S and a have to reflect the specific form of
the rate equations.

(18a)
(18b)

D. Other approximations

Instead of condition (12), we may directly solve (11) by
taking the following options:

(i) P;~P,~=0. This reduces to the one-level model of
Appendix A.

(i) Py =0, which reduces the model to that of two lev-
els discussed in Appendix B. Two cases P, =1 and P, =0
are possible.

(iii) P,=P;=0. We then obtain from (11) an equation
for the ground state p =1 similar to (8). Here we do not
assume (12).

(iv) P3;~0. This provides a coupled set of equations for
the transient solutions for the two lowest states, but as
with all the above, the absence of (12) is a serious
shortcoming of this approximation, as will be seen in Sec.
Iv.

In all of the above four cases, the behavior of the plas-
ma is quite different from that of (13) with (12), illustrat-
ing the importance of condition (12). Thus, the useful
features of our model are that (a) the role of the excited
states with p > 2 is compactly represented by (12), (b) cas-

cade contributions from and to level 3 through level 2 are
included, (c) the distinction between the effective rates
with and without level 2 is brought out clearly, and (d)
the radiative and collisional contributions can be explicit-
ly demonstrated.

IV. NUMERICAL RESULTS

We numerically examine the model defined by (13), and
the other approximate models introduced in Secs. IT and
III. The effective rates at equilibrium are explicitly eval-
uated and compared with the solutions of Eq. (6).

A. The full system of Bates et al.

We start with the solution of the full system described
by (1) and (6) of Sec. II. The solution is, of course, identi-
cal to that of Bates et al. [2] when all the input rates used
are the same, but the result is presented here in a form
that is convenient for comparison with the following
model solutions.

First, the input rates for Eq. (6) are needed. They are
obtained from Refs. [19-21] and are !/ averaged, con-
sistent with the rate equations. Table I contains the col-
lisional transition rates K,, for p,qg S4, the collisional
ionization rates K, and thelr inverse K, and the three-
body recombination rates. Table I, part (b), gives the ra-
diative recombination rates Bp, for p <8. Both these
quantities depend on the electron temperature 7. Final-
ly, Table I part (c), summarizes the radiative decay prob-
abilities 4,,, with p > g, for p,g <9.

_ The set of coupled equations (6) are solved by setting

P,=0 for all p > 1, after truncating the set at p =s. The
states with p > s have reached the Saha equilibrium at all
times. The parameter s depends on the density and tem-
perature, and generally s <30. Depending on the desired
accuracy of the solution, say, one part in 10000, the s was
determined by solving the set for P with an initial s and
checking iteratively for the resulting P, ~1 to a preset ac-
curacy. The result is given in Table II, which used a -
more complete set of rates than that given in Table 1.

TABLE II. The effective collisional radiative recombination and ionization rates ; and S|, respectively, are given, as defined by
Eq. (8) for the full system (6). The collisional and radiative contributions are listed separately (subscripts ¢ and 7). Note the shift in
the dominance as the electron density is increased. These rates are to be compared with the direct rates given in Table I. The ap-
proximate model solutions of this paper are also compared with this table. The cutoff values s are given in the last column. They are
determined numerically by testing the values of P, such that the population densities approach unity for all p > s, to a preset accura-
cy. The density and temperature dependence of this parameter is evident. The small s at high density is reflected in the goodness of
the three-level model, where P; =1 was assumed. Numbers in square brackets denote powers of 10.

logion, T (10° K) Sie Sic S Qe . a; s
8 4 4.8[—21] 4.8[—21] 1.1[—26] 1.5[—21] 9.8[—13] 9.8[—13] 20
8 16 2.4[—11] 2.3[—11] 37[—13] 4.5[—22] 3.1[—13] 3.1[—13] 7
8 64 8.8[—09] 7.3[—09] 09] 1.3[—22] 1.0[ —13] 1.0[ —13] 4
13 4 4.8[—21] 4.8[—21] 36[—25] 2.0[—15] 1.3[—11] 1.3[—11] 18
13 16 24[—11] 2.3[—11] A[—12] 9.7[ —17] 6.3[—13] 6.3[—13] 5
13 64 8.8[—09] 6.4[ —09] 24[—09] 1.6[ —17] 1.2[—13] 1.2[—13] 3
18 4 1.0[ —21] 2.1[—22] 8.0[ —22] 1.9[ —07] 1.0[ —08] 2.0[ —07] 15
18 16 23[—11] 4.2[ —14] 23[—11] 9.2[—11] 5.0[—12] 9.7[—11] 4
18 64 8.8[ —09] 3.3[—12] —09] 2.7[—12] 1.7]—13] 2.9[—12] 3
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Table II summarizes the solution of the equations (6) at
equilibrium, and the effective collisional radiative ioniza-
tion and recombination, S; and «a,, respectively, for the
ground state p =1 are presented, as defined in (8). The
collisional (c) and radiative (r) contributions are tabulated
separately to show that as the electron density increases,
the dominance in the rates shifts from radiative to col-
lisional. (See also Fig. 1.) The upper-state cutoff s was
determined for each density and temperature value,
where the P, are better than one part in 1.0000 for all
p>s.

The salient features of the solutions and the effective
rates are (i) As n, increases, the contribution to @, and S,
shifts from the radiative to collisional cascades; (ii) the

-6.5 T T
(@)

Full System

T=4000(K)

-1.5

-9.5
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density effect is the largest at low 7, where the collision
rates are small but increase rapidly with density; (iii) the
roles of excited states and cascade transitions are impor-
tant. This will be brought out more clearly in the models;
and (iv) For all ¢, the high Rydberg states with p > s are in
Saha equilibrium, where s is strongly dependent on 7 but
only mildly on the density. At high T, s is very small,
suggesting that, when perturbed, almost all levels quickly
reach the Saha equilibrium.

B. The three-level model, with Pz =0

Now consider the model described by (13) with the cru-
cial approximation (12). The numerical result is given in

-10.0 . , : ,
(®)

Full System
T=16000(K)

-11.0

loglooc1

-12.0

o Total

+ Col.
x Rad.
-10.5 . -13.0 : L L .
15 16 17 18 15 16 17 18
log,gn, loggn,
-11.5 T T
©
Full System
-120 | T=64000(K) -
-12.5 -
-
3
[=]
=
)
2
-13.0 - —
-13.5 |~ o Total
+ Col.
x Rad.
-14.0 | | -
15 16 17 18

loglonC

FIG. 1. The values of log e, for the full system are given as a function of electron density 7, in units of cm ™3, The a’s are given
in units of cm3/sec. The collisional and radiative contributions are presented separately, at three different temperatures. Note that
the collisional effect is small for log on. < 16. The drastic shift from the radiative to the collisional mode is seen in the figure, with the
crossover at around 7, ~8 X 10' cm 3. The total rates are given by the solid line, (O ).
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Table III, part (a), and Fig. 2, which may be compared cascade mode 3—2—1 and by the radiative recombina-
with that of Table II and Fig. 1(b). The qualitative trends tion mode c¢—1, but at higher densities the collisional
are well reproduced for all T and n., and even quantita- cascade 3—2—1 dominates. On the other hand, for the
tively at high densities. Except for the low T and low ionization S, the direct ionization mode 1—c is impor-
density, the overall agreement with that of Table II is tant at low densities, but the cascade excitation

good. (See also Fig. 3.) The values of S{* at low densi- 1—2-—3—>c is the main process at high density.
ties and low temperature are the result of severe cancella-
tions between the two contributions ¢ and r, and there- C. P,#0, P, =1
fore their numerical values may not be very accurate.
The overestimation of the changes at low densities is As stressed earlier, the effective rate coefficients must

due to the fact that (12) is a poor approximation of the reflect the rate equations to which the rates are to be in-
role of all the excited states at low density. Not only does serted. To demonstrate the point, we evaluate the
P, vary with T and n_, but the presence of the rest of the effective rates of (17), and the results are given in Table
excited states is being simulated by this one parameter. III, part (b), and Fig. 3. Obviously, they are quite
Nevertheless, the model is sufficiently simple to bring out different from those in Table III, part (a). S{*" and S, are
the essential features of the original system. The dom- similar only at high T and high density. On the other
inant contribution to «; at low density is the radiative hand, the S’s for states 1 and 2 are not easily predictable

TABLE III. The effective rates calculated using the three-level models: (a) The rates defined by Eq. (15) with assumption (12). (b)
The rates defined by Eq. (17), with the same assumption (12). (c) The rates obtained without (12), as explained in Sec. III D, para-
graph (iii). Numbers in square brackets denote powers of 10.

(a)

logion. T (10° K) s s s o o o
8 4 4.8[—21] 4.8[—21] 4.2[—24] 9.7[—20] 53[—11] 5.3[—11]
8 16 2.3[—11] 22[—11] 15[—12] 59[ 22] 42[—13] 42[—13]
8 64 8.2[—09] 5.8 —09] 2.4[—09] 7.2[—23] 8.5[—14] 8.5[—14]
13 4 4.8[—21] 4.8[—21] 4.5[ —24] 0[—14] 57[—11] 5.7[—11]
13 16 2.3[—11] 22[—11] 1.6 —12] 6.3[—17] 4.4[—13] 4.4[ —13]
13 64 8.2[—09] 5.7[—09] 2.4[—09] 7.5[—18] 8.6[ —14] 8.6 —14]
18 4 1.3[—21] 1.9[ —22] 1.1[—21] 2.5[—07] 1.4[ —08] 2.7[—07]
18 16 22[—11] 5.0[ —14] 22[—11] 8.9[—11] 4.5[—12] 9.4[—11]
18 64 8.1[—09] 42[—12] 8.1[—09] 2.5[—12] 1.4[ —13] 2.6 —12]

(b)

logon, T (10° K) s SP sP ad o8 af®
8 4 4.8[—21] 4.7[—00] 42[—24] 6.7[—11] 53[—11] 53[—11]
8 16 2.3[—11] 4.7[—00] 1.5[—12] 43[—13] 3.0[—13] 42[—13]
8 64 8.2[—09] 4.7 —00] 2.4[—09] 6.9[ —14] 3.3[—14] 8.5[ —14]
13 4 4.8[—21] 4.7[—05] 4.5[ —24] 6.7[—11] 5.7[—11] 5.7[—11]
13 16 2.3[—11] 4.7[—05] 1.6[ —12] 4.3[—13] 32[—13] 4.4[—13]
13 64 8.2[—09] 4.8[—05] 2.4[—09] 6.9[—14] 3.4[—14] 8.6[ —14]
18 4 4.8[—21] 1.2[ —08] 1.1[—21] 1.0[ —09] 3.5[—07] 2.7[—07]
18 16 2.3[—11] 2.0[—07] 22[—11] 6.4[—12] 1.9 —09] 9.4[—11]
18 64 8.2[—09] 6.6[ —07] 8.1[—09] 7.9[—13] 1.2[—10] 3.0[—12]

(c)

log;on. T (10° K) s NS at” oy
8 4 2.0[—26] 4.2[—24] 4.7[—13] 53[—11]
8 16 3.4[—13] 1.5[—12] 2.1[—13] 42[—13]
8 64 1.5[—09] 2.4[—09] 8.1[—14] 8.5[ —14]
13 4 2.4[ —26] 4.5[—24) 5.2[—13] 5.7[—11]
13 16 3.7[—13] 1.6[ —12] 2.2[—13] 4.4[—13]
13 64 1.6[ —09] 2.4[—09] 8.2[ —14] 8.6[ —14]
18 4 2.2[—23] 1.1[—21] 5.2[—09] 2.7[—07]
18 16 2.1[—11] 22[—11] 8.9[—11] 9.4[—11]
18 64 8.1[—09] 8.1[ —09] 2.6[ —12] 3.0[—12]
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FIG. 2. One sample value of log;oc; obtained with the three-
level model is given for 7=16 000 K. This figure is nearly iden-
tical to Fig. 1(b). The results for the three-level model at
different temperatures are similar to that for the full system
given in Fig. 1. We do not give figures for the collisional part .S
because of the severe cancellations among the r and ¢ com-
ponents involved.

from the general properties of the rates, unless an explicit
calculation is performed, as shown here. Similar features
are observed also for the a’s. The steady-state solution
for the ground state at t— oo is, of course, the same as
that obtained in Sec. IV B above, but the time-dependent
solutions are different at finite . Obviously, this result
can be extended to the more general case where the
effective rates for the truncated set of rate equations
should retain the effect of states omitted in the set.

D. P,=P;=0

The role of the excited states, which are in Saha equi-
librium at all times, can be studied by abandoning (12)
and directly solving the three coupled equations (11) for
all three P’s, as discussed in Sec. II. The results are
presented (S{*" and {*") in Table III part (c), and Fig. 3,
which are to be compared with Table III part (a). Note
the drastic reduction in the rates at low T, but the full
values at higher T are quickly reached, where we expect
levels 2 and 3 to be near the Saha values. The change at
low T is strictly due to assumption (12); thus, the three-
level model without (12) is reasonable only at high tem-
perature, but poor at low 7. The a’s are less sensitive to
density, while the S are not well represented at all at low
density by the model without (12). This is one of the
main points clarified by the model.

V. FIELD DISTORTION BY PLASMA IONS

It has been known for some time [4—7] that an electric
field, external or microfield due to plasma ions, present in
the atomic interaction region where reactions take place,

can seriously affect the rates themselves. The plasma
electron perturbers primarily cause collisional transitions,
and this effect has already been included in the rate equa-
tions of types (1) and (11). On the other hand, plasma
ions are relatively slow movings, and we may assume
their electric field to be quasistatic, in the lowest approxi-
mation. Eventually, the strength and the direction of
these fields should be averaged over their spatial and ve-
locity distribution. In this section we assume that such
an electric field is given in terms of the ion density and
temperature, and consider its effect on the rates, within
the l-averaged theory described in Secs. II and III.

The system described by (1) and (11) is already aver-
aged over the angular momentum of the atomic states, as,
for example,

A,,= 3 (21, +1)A(pl,,ql,)/p> (19)
Ip,lq
and
Kp=3 (21, +1)K (pl,,ql,)/p? (20)
P9

etc. The physical justification for this average is that
once an electron is placed in the pl, sublevel, the plasma
electrons (and ions) inside the Debye sphere strongly per-
turb the levels and mix them uniformly over the sublevels
[22] of a given principal quantum number p, since the I-
changing collisions are usually very fast. Therefore,
within the relaxation time of the atomic states by radia-
tive decays, for example, it is not possible to isolate the
particular initial / sublevel and retain it in that state dur-
ing the decay.

The distortion of atomic states (p/,m) of the spherical
coordinate wave functions {¢P,pm} may be described by

the corresponding solutions {¢,, ,,} in the parabolic
P

coordinates, where v and p are the electric quantum
numbers. (We use here v and p in place of the usual n,
and n, quantum numbers.) It was shown recently [8]
that, within the subspace of degenerate levels of hydro-
genic ions, one must use the spherical 3 base for F=0,
and the parabolic ¢ basis for the field greater than some
cutoff field strength equivalent of the spin-orbit coupling.
The connection between the two sets is given for each p
by [23-25]

(p) — (p,m)
¢ppvm_ IECV‘;I': wplp » (21)
14

where the magnetic quantum number m is conserved if
the field is oriented in the z direction. The coefficients C
are the transformation matrix [23-27] given in terms of
the Clebsch-Gordan coefficient, as

p— I

cor=(—n'"PTm2l+ 1) m, m_ —m

] , (22)

where p is the principal quantum number of the atom,
and p_=(p—1)/2; my=m*k, k=v—pu, with
v=12,..., p—|m|—1; and u=p—v—|m|—1. This
formula is valid only for the subspace of given principal
quantum number p, so that no mixing among the
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different p’s is allowed for (21) to be valid. The problem
becomes more involved when the field strength is strong,
so that the p- mixing is important. Recently, an approxi-
mate procedure for treating this problem was examined
[8], and a simple transition operator was derived that
mixed both the p and /,. It is also possible to diagonalize
the field-distorted energy matrix {(p|H ,+V,|p’) in
terms of the unitary matrix C¥, analogous to C of Eq.
(24). The rate equations and the rates themselves are
both to be transformed using C¥, where p and g are no
longer good quantum numbers.

We now evaluate the field-distorted rates in the I-
averaged representation, but limiting the mixing to
within a given p or g subspace. Thus by field mixing of

logmoc1

-13.5 — ' —
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the initial and final states in radiative decay, for example,
we obtain

Af='3 A(pv,,qv)|{pv,|Dlgv,)|*2v,+1)/p?

=3 3 Ian PICi% 2v,+1) A(pl,,ql,) /p?

b
=4, (23)

where the / and v sums were interchanged and the unitar-

ity of the C’s was used; |CP) |?=1. D is an electric
vp! T,

dipole coupling. Similarly, for the collisional rates by the

9.5 T T

(b)
T=16000(K)

-10.0 |~

-10.5

-11.0

-12.0

-12.5

105 —————

©

-11.0 [~ =64000(K)

logwoc1

8 10 12

logmnC

FIG. 3. The values of log,oc; as functions of electron density are compared for different approximate models, at three tempera-

tures. Generally, the three-level works well for logon. > 15, where the density effect starts to become significant. a;, full model of

Bates et al; af”), three-level model; a{*(a) and a{¥(b), two-level model of Appendix B; a!", one-level model of Appendix A.
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plasma particles (electrons), we have

KL= [pv,IVplgv, ) ?(2v, +1)/p?
Vqu

~K,, , (24)

where Vp is the perturbation by the plasma particles,
which usually assumes a long-range—dipolelike form
[13-16]. Therefore, in the l-averaged rate equations and
averaged rates, the field distortion effect of the plasma
ions may be neglected, to lowest order. The above proof
is valid in the weak-field limit. This does not mean that
the distortion effect is negligible in all cases [27]. When
the explicit / dependence is retained in a more refined cal-
culation, the field mixing by the plasma ions may turn
out to be important, especially in those processes where
the high Rydberg states play an important role. This
problem requires further study.

VI. DISCUSSION

In this paper we have studied hydrogen plasma and
showed several dominant behaviors of the solutions of the
rate equations

(1) The collisional radiative recombination and ioniza-
tion rates are significantly altered by the collisional tran-
sition effects caused by the plasma electrons, in complete
agreement with the work of Bates et al. The enhance-
ment in the rates with increasing electron density is
brought about by the shift in the dominant mechanisms
for capture and ionization from radiative to collisional
cascades. In fact, at high densities, the capture rates be-
come directly proportional to the electron density.

(2) The field distortion effect of the plasma ions is
shown to be negligible, to lowest order and in weak-field
limit, when the angular-momentum dependence has been
averaged over in the theory. That is, for the field
strength below the Inglis-Teller limit, where the mixing
between levels of different principal quantum numbers is
small, the averaging procedure minimizes the field distor-
tion effect. Such averaging is physically reasonable when-
ever the /-changing collisions of the system with plasma
electrons are rapid. However, when the typical transition
rates for the state p are as large as the /-mixing collisions,
the explicit / dependence and the field effect can be siz-
able.
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(3) We have also stressed the fact that the definition of
the effective rates o and .S depends explicitly on the ap-
proximate rate equations one solves, in which the rates
are to be inserted. This trivial but important point has
been illustrated in Sec. IV, where the rates one generates
correctly reflect the conditions under which rate equa-
tions are constructed.

The present study raises many questions which are yet
to be clarified, such as (i) the / and field dependence of the
system, both in the rate equations and rate coefficients;
(ii) the time dependences of the electron and ion densities,
and their relationship to the initial conditions; (iii) the
presence of heavier impurity ions which can undergo
many additional reactions involving more than one elec-
tron, such as dielectronic recombination; and (iv) possible
nonequilibrium conditions on the electron and ion distri-
bution, which can seriously affect the rates themselves.
These questions will be examined in follow-up reports
[17,18].
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APPENDIX A: ONE-LEVEL ATOMS

The model consists of the ground-state level 1 plus the
continuum c i.e., 1 +¢. The rate equation is simply given
by

P,=—Pn.K,,+nK,.+(n2/nf),

=—Sn. P +a\V(n2/n¥) . (A1)

Thus, we have
S\ =K. =S, (A2)
aV=B+nf/n K, =ai+ail . (A3)

The effective rates obtained by this simple model are
given in Table IV. The model is simple and the change in
a{! is noticeable immediately. Except for the collisional
recombination rate «; at high density and high tempera-
ture, all the other values are essentially unchanged from

the bare K |, and f3;.

TABLE IV. The rates obtained for the one-level model of Appendix A. The shift in the dominance at high density, from r to ¢, is

clearly seen. Numbers in square brackets denote powers of 10.

logione T (10° K) s s S, aft af¥ o
8 4 1.3[ —26] 4.2[ —24] 1.1 —26] 2.5[—13] 53[—11] 9.8[ —13]
8 16 3.4[—13] 1.5[—12] 3.6[—13] 1.2[—13] 42[—13] 3.1[—13]
8 64 1.5[—09] 2.4[—09] 1.6[ —09] 52[—14] 9.6] —14] 1.0[ —13]
13 4 1.3[ —26] 4.5[—24] 2.5[—25] 2.5[—13] 5.7[—11] 1.3[—11]
13 16 3.4[—13] 1.6 —12] 1.1[—12] 1.2[ —13] 4.4[ —13] 6.3[—13]
13 64 1.5[—09] 2.4[—09] 2.4[—09] 52[—14] 8.6[ —14] 1.2[—13]
18 4 1.3[—26] 1.1[—21] 8.2[—22] 3.3[—12] 2.7[—07] 2.0[—07]
18 16 3.4[—13] 22[—11] 2.3[—11] 1.5[—12] 9.4[ —11] 9.7[—11]
18 64 1.5[ —09] 8.1[—09] 8.8[ —09] 5.2[—13] 2.6[ —12] 2.9[—12]
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TABLE V. The rates obtained with the two-level system of Appendix B. The strong effect of P,=1 is demonstrated. The two
different sets of solutions with labels (a) and (b) corresponding to the cases (i) and (ii) of Appendix B are presented. Numbers in

square brackets denote powers of 10.

log;on, T (10° K) S (b) S (a) S, a? (b) a? (a) a,

8 4 1.3[ —26] 4.8[—21] 1.1[—26] 3.8[—13] 6.0[ —08] 9.8[—13]
8 16 3.4[—13] 22[—11] 3.6[—13] 1.8[—13] 4.7[—12] 3.1[—13]
8 64 1.5[—09] 7.4[ —09] 1.6[ —09] 7.2[—14] 1.4[—13] 1.0[ —13]
13 4 1.4[—26] 4.8[—21] 3.6[ —25] 3.9[—13] 6.0[ —08] 1.3[—11]
13 16 3.5[—13] 22[—11] 1.1[—12] 1.8 —13] 4.7[—12] 6.3[—13]
13 64 1.5[—09] 7.4[—09] 2.4[—09] 7.2[—14] 1.4[—13] 1.2[—13]
18 4 1.5[ —24] 4.8[—21] 8.0[ —22] 3.5[—10] 1.2[—06] 2.0[—07]
18 16 1.3[—11] 22[—11] 2.3[—11] 5.3[—11] 2.1[—10] 9.7[—11]
18 64 7.0[ —09] 7.4[—09] 8.8[—09] 2.3[—12] 2.7[—11] 2.9[—12]

APPENDIX B: TWO-LEVEL ATOMS aP(a)=[B,+n Ky 1+ nf/mH[ A4, +n.Ky], (B2a)
The second simple model is described in terms of levels S (a)=K,,+K,, . (B2b)

1 and 2 plus the continuum c, i.e., 1+2+c. The corre-
sponding rate equations are identical to (8), with P;=0.
Two different assumptions may be made on P,.
(i) P,=1. This gives immediately
Py=—P[nK, +nKp,l+nKy,
+nf/nf) Ay +n K\ +(nl/nt)B,
=—P,n,S?(a)+aP(a)n2/nf), (B1)

which defines the effective ionization and recombination
rates as

The numerical values for the effective rates are given in
Table V.

(ii) Alternatively, we may put P2=O, rather than the
assumption P, =1. The results of these two assumptions
are given in Tables V, S{?(b) and a{?(b). It clearly shows
the effective of assuming P,=1. At equilibrium P, =1
gives generally an overestimation of the effect of the cou-
pling. This is also true with the three-level model, but
with less drastic effect. The more accurate model con-
sidered in Secs. IT and III retains this feature.
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